一、a矩阵的逆矩阵和b矩阵的逆矩阵?
如果A+B可逆,那么设它的逆为C矩阵,E为单位矩阵,求解:
(A+B)C=E
C(A+B)=E
即可
(A+B)B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)
=[AB^(-1)+E]{A[A^(-1)+B^(-1)]}^(-1)
=[E+AB^(-1)][E+AB^(-1)]]^(-1)
=E
B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)(A+B)
={[A^(-1)+B^(-1)]B}^(-1)[E+A^(-1)B]
=[A^(-1)B+E]^(-1)[A^(-1)B+E]
=E
所以(A+B)^(-1)=B^(-1)[A^(-1)+B^(-1)]^(-1)A^(-1)
扩展资料
定理
(1)逆矩阵的唯一性。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1 。
(2)n阶方阵A可逆的充分必要条件是r(A)=m 。
对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。
推论 满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。
二、逆矩阵乘原矩阵和原矩阵乘逆矩阵?
逆矩阵的逆矩阵等于原矩阵。
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。若矩阵A是可逆的,则A的逆矩阵是唯一的。所以矩阵A的逆矩阵的逆是矩阵A。
验证两个矩阵互为逆矩阵
按照矩阵的乘法满足: AB=BA=E,故A,B互为逆矩阵。
扩展资料:
逆矩阵的性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
三、a的逆矩阵的逆矩阵等于a?
如果矩阵可逆,它的逆矩阵唯一,且原矩阵和逆矩阵互为逆矩阵。如果不可逆,则其逆矩阵为广义逆,但广义逆不唯一,所以,此时的逆矩阵的逆矩阵不一定是原矩阵了
四、矩阵的逆矩阵的逆矩阵为什么等于a?
逆矩阵的逆矩阵等于原矩阵。
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。若矩阵A是可逆的,则A的逆矩阵是唯一的。所以矩阵A的逆矩阵的逆是矩阵A。
逆矩阵的性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
五、a的逆矩阵的逆矩阵是多少?
注意矩阵与其逆矩阵相乘得到单位矩阵E
即AA^(-1)=E
通常使用初等行变换来求逆矩阵
而在这里
显然A的逆矩阵还是其自己A,AA=E
六、a的逆矩阵加b的逆矩阵?
矩阵基础知识A加B的逆不等于A的逆加B的逆。
若A、B、A^-1+B^-1都可逆, 则A+B可逆
证明: 因为 A+B = B(A^-1+B^-1)A
由已知 A、B、A^-1+B^-1都可逆
所以 A+B 可逆
且(A+B)^-1
= [B(A^-1+B^-1)A]^-1
= A^-1(A^-1+B^-1)^-1B^-1
扩展资料:
将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。
在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。
七、任何矩阵都有逆矩阵?
p矩阵不一定有逆矩阵,要它的对应行列式值不为0。设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
只有方阵才可能有逆矩阵,因为逆矩阵的定义,要求AB=BA=I,而单位矩阵I是方阵,那么由矩阵乘法的要求,A、B都只能是方阵,而事实上,对于非方阵,可以定义广义逆矩阵
八、求矩阵a的逆矩阵?
矩阵a的逆矩阵等于a的伴随矩阵除以a的模值
九、逆矩阵的转置矩阵等于转置矩阵的逆矩阵?
若矩阵为方阵且其逆矩阵存在时,矩阵的逆的转置 等于 矩阵的转置的逆。
注意;只有方形矩阵才有矩阵的逆,而非方形的叫做“矩阵的伪逆”,此处只论方阵。其次只有当方阵的行列式不为0时,其逆矩阵才存在,故这里只讨论其行列式不为0的方阵(只要有任意一行或一列全文0的方阵,其行列式值为0,但不仅限于此).
先算矩阵的逆的转置
算此矩阵的转置的逆
故证明成立。
扩展资料:
逆矩阵的性质
性质定理
可逆矩阵一定是方阵。
如果矩阵A是可逆的,其逆矩阵是唯一的。
A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
两个可逆矩阵的乘积依然可逆。
矩阵可逆当且仅当它是满秩矩阵。
证明
逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。
设B与C都为A的逆矩阵,则有B=C
假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=C,因此某矩阵的任意两个逆矩阵相等。
由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。
矩阵A可逆,有AA-1=I 。(A-1) TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I
由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。
1)在AB=O两端同时左乘A-1(BA=O同理可证),得A-1(AB)=A-1O=O
而B=IB=(AA-1)B=A-1(AB),故B=O
2)由AB=AC(BA=CA同理可证),AB-AC=A(B-C)=O,等式两边同左乘A-1,因A可逆AA-1=I 。
得B-C=O,即B=C。
可逆等价条件
若|A|≠0,则矩阵A可逆,且
其中,A*为矩阵A的伴随矩阵。
证明:
必要性:当矩阵A可逆,则有AA-1=I 。(其中I是单位矩阵)
两边取行列式,det(AA-1)=det(I)=1。
由行列式的性质:det(AA-1)=det(A)det(A-1)=1
则det(A)≠0,(若等于0则上式等于0)
充分性:有伴随矩阵的定理,有
(其中
是的伴随矩阵。)
当det(A)≠0,等式同除以det(A),变成
比较逆矩阵的定义式,可知逆矩阵存在且逆矩阵
十、什么矩阵对称矩阵等于逆矩阵?
A的逆矩阵是对称矩阵。因为A是对称矩阵 ,其转置矩阵和自身相等,则 A^T=A;那么 (A^-1)^T = (A^T)^-1 = A^-1,所以A的逆矩阵是对称矩阵对称矩阵是元素以对角线为对称轴对应相等的矩阵.
可逆矩阵是 给定一个n阶方阵A,若存在一n阶方阵B使得AB=BA=In,其中 In 为 n 阶单位矩阵,则称 A 是可逆的,且 B 是 A 的逆阵,记作 A^ˉ1
- 相关评论
- 我要评论
-